نماد آخرین خبر

پیش‌بینی شیوع بیماری با استفاده از رسانه‌های اجتماعی

منبع
ايسنا
بروزرسانی
پیش‌بینی شیوع بیماری با استفاده از رسانه‌های اجتماعی

ایسنا/پژوهشگران کانادایی یک مدل یادگیری ماشینی را ارائه داده‌اند که با تحلیل پست‌های منتشرشده در رسانه‌های اجتماعی می‌تواند به پیش‌بینی محل وقوع شیوع بیماری کمک کند.

میزان واکسیناسیون در بسیاری از جوامع به دلیل گسترش اطلاعات نادرست رو به کاهش است و بیماری‌هایی مانند سرخک که پیشتر ریشه‌کن شده یا کنترل‌شده بودند، در سراسر آمریکا و کانادا رو به افزایش هستند.

به نقل از میراژ نیوز، پژوهشگران «دانشگاه واترلو»(UWaterloo) در کانادا روش جدیدی را ارائه داده‌اند که می‌تواند به مقامات بهداشت عمومی در پیش‌بینی محل وقوع شیوع بیماری کمک کند. این روش با تحلیل پست‌های منتشرشده در رسانه‌های اجتماعی، نشانه‌های اولیه افزایش تردید را درباره واکسن شناسایی می‌کند. این یک سیگنال هشداردهنده است که می‌تواند پیش از آغاز شیوع هر بیماری ظاهر شود.

دکتر «کریس باوخ»(Chris Bauch)، استاد دانشگاه واترلو گفت: در طبیعت، ما سیستم‌های مسری مانند بیماری‌ها را داریم. ما تصمیم گرفتیم به پویایی اجتماعی مانند یک سیستم اکولوژیکی نگاه کنیم و بررسی کردیم که چگونه اطلاعات نادرست می‌توانند از طریق یک شبکه رسانه اجتماعی به صورت مسری از کاربری به کاربر دیگر منتقل شوند.

این گروه پژوهشی یک مدل یادگیری ماشینی را بر اساس مفهوم ریاضی نقطه اوج -لحظه‌ای که یک سیستم ناگهان به حالت جدیدی تغییر می‌کند- آموزش دادند. باوخ گفت: فرقی نمی‌کند که بدن یک فرد مبتلا به صرع را بررسی کنید یا یک سیستم اکولوژیکی مانند دریاچه‌ اشغال‌شده توسط جلبک‌ها یا از دست دادن ایمنی جمعی در یک جمعیت. از نظر ریاضی، یک مکانیسم اساسی مشترک وجود دارد.

پژوهشگران برای آزمایش مدل خود، ده‌ها هزار پست عمومی منتشرشده در پلتفرم ایکس از کالیفرنیا را درست پیش از شیوع گسترده سرخک در سال ۲۰۱۴ تحلیل کردند. روش‌های سنتی مانند شمارش ساده توییت‌های شکاکانه پیش از شیوع، هشدار بسیار کمی را نشان می‌دادند.

باوخ گفت: روش‌های معمول پیش‌بینی شیوع بیماری با انجام دادن تحلیل آماری توییت‌های شکاکانه، زمان زیادی را پیش از شیوع بیماری ارائه نمی‌دهند. ما با استفاده از نظریه ریاضی نقاط اوج توانستیم زمان بسیار بیشتری را به دست بیاوریم و الگوهای موجود در داده‌ها را بسیار مؤثرتر تشخیص دهیم.

پژوهشگران با مقایسه الگوهای ارسال پست در کالیفرنیا با مناطق دیگری در همان زمان که هیچ شیوعی در آنها رخ نداده بود، دقت روش نقطه اوج را تأیید کردند.

اگرچه این مدل در ابتدا روی ایکس آزمایش شد اما می‌توان آن را به راحتی با پلتفرم‌هایی مانند «تیک‌تاک» یا «اینستاگرام» نیز تطبیق داد. با وجود این، در مقایسه با فرمت عمدتاً مبتنی بر متن پلتفرم ایکس، برای تحلیل تصاویر و ویدئوهای این دو پلتفرم به منابع محاسباتی بیشتری نیاز خواهد داشت.

باوخ گفت: ما در نهایت می‌خواهیم این مدل را به روشی برای مقامات بهداشت عمومی تبدیل کنیم تا بر جمعیت‌هایی که در معرض بیشترین خطر برای رسیدن به نقطه اوج هستند، نظارت کنند. ریاضیات کاربردی می‌تواند روش قدرتمندی برای پیش‌بینی، نظارت و رسیدگی به تهدیدات سلامت عمومی باشد.

🔹"آخرین خبر" در روبیکا
🔹"آخرین خبر" در ایتا
🔹"آخرین خبر" در بله

اخبار بیشتر درباره

اخبار بیشتر درباره